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ABS TRACT

For matrices A,C e C.., the C-numerical radius of A is the

nonnegative quantity

rc(A)= maxItr(CU*AU) :u unitary)

This generalizes the classical numerical radius r(A). It is known that

r constitutes a norm on C if and only if C is nonscalar and
C

tr C j 0. For all such C we obtain multiplicativity factors for

rc, i.e., constants g > 0 for which prC is sub-multiplicative on CS

1. Intruction statement of Main Results.

Let Cnx n  denote the algebra of n X n complex matrices, and let

-nxnn

be a seminorm on C ni.e., for all A,B e C and a F C, let N satisfy:
4nXn

N(A) > 0,

N(aA) = 101 - N(A)

N(A+B) < N(A) + N(B)

If in addition N is positive definite, that is, INECTED

N(A) >0 for A 1 '0 ,

then following Ostrowski [9] we say that N is a generalized matrix norm.

Finally, if N is also (sub-) multiplicative, namely - L . O

N(AB) < N(A) N(B) Diatribution/
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then N is called a matrix norm. Hence, N is a matrix norm if and only

if it is an algebra norm on C

Given a seminorm N on C And a fixed constant v > 0, then clearly

N 9=P

is a seminorm too. SimiJarly, N is a generalized matrix norm if and only

if N is. In both cases, N may or may not be multiplicative. If it is,

then we call g a multiplicativity factor for N.

The concept of multiplicativity factors was introduced by us in [4] where

we proved the following:

(i) [4, Theorem 3] Nontrivial, indefinite seminorms on C do not

have multiplicativity factors.

(i) [4, Theorem 4] If N is a generalized matrix norm on C

then N has multiplicativity factors; and > • 0 is a multiplicativity factor

for N if and only if

(1.1) _ mx-f-(AB) : A,B e Cx , N(A) = N(B) = }

This result provides a better insight into the relation between positive-

definiteness and submultiplicativity of seminorms on finite dimensional

algebras.

One reason for introducing the idea of multiplicativity factors was to

investigate the norm properties of C-numerical radii defined by us in [4] as

follows: for given matrices A,C E C the C-numerical radius of A is

the nonnegative quantity

rc(A) - maxtr CU*AUI :U mn unitary)

where * denotes the adjoint.

._ -. s- -. ,-- - --
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Evidently, for C diag(1,0,...,O), rC  reduces to the classical

numerical radius

(1.2) ma[= I :x*Ax x e =xx

hence r is a generalization of r.

It is useful to recall now Lema 9 of [3] which implies that rC is

invariant under unitary similarities of C, i.e.,

rUCU(A) = rc(A), U unitary

Thus, we may assume that C is upper triangular.

Regardless of the structure of C we have:

THEOR04 1.2.

(i) (trivial) For any fixed C, rC is a seminorm on CnXn .

(ii) ([4, Theorem 2]; compare [8].) rC  is a generalized matrix norm

C nX, n>2, ifand onlyif

(1.3) C is a nonscalar matrix and trC , 0

Theorems 1.1 (ii) and 1.2 (i) yield now

COROLIAR 1.1. For n > 2, rC has multiplicativity factors if and

only if C satisfies (1-3).

-' Theorem 4.1 of [5] (cmpare [43) provides multiplicativity factors for

all the C-numeickl radii in Corollary 1.1, except for the case where C has

equal eigenvalues. In the present paper, we obtain multiplicativity factors

for all rc matisfying (1.3) as well as improve our previous results as

follow:

-I-



THEO D4 1.3- (Main Theorem.) Let C= (Yi) E C n > 2, bea

nonscalar, upper triangular matrix with tr C / 0. Denote

n
Ir cI =I3  C1 r I a, E lOyj l, 8 ma I8Yjj kI ,

4(l -1/n)T + 25

-- k {j 1z j=. kl

Jk i'yj k I. T+2 v--max{ ,.+

Then:

(i) If C is normal (i.e., diagonal) with eigenvalues of the same

argument, then any sk with

(1.5) g. a/ r/0 2 = aI -

id a multiplicativity factor for rC.

(ii) If C is normal, then g is a multiplicativity factor for

r If

(1.6) > a/,\

(iii) If C is nonnormal (i.e., nondc.agcual) with equal eigenvalues,

then any g with

(1.7) A > = 2

in a mltiplicativity factor for r C

(iv) If C is ncmnormwl and its eigenvalues are not &l equal, then

pi is a multipicativity factor if

2
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The proof of Theorem 1.3 is given in Section 2.

Evidently, Theorem 1.3 provides multiplicativity factors for all the C-radii

which have such factors. Parts (i), (ii) and (iv) of the theret improve our re-

sults in Theorem 4.1 of (5], and part (iii) treats previously unattended cases.

The following table lists several typical examples:

0 1 0 -i ) (0 - (i 0 1 0 0

Factors none none . ) 96/25 v > 64/3 4 z9(1: +-) i> 16h

Reference Cor. 1.1 Cor. 1.1 (1-5)* (1.6) (1-7) (1.8)

Before proceeding to the proof of Theorem 1.3, we would like to reflect

again on the fact that rc is Invariant under unitary similarities of C. We

conclude, as in Theorem 4.2 of [5], that if rC has multiplicativity factors,

then its optimal (smallest) factor gro, is also unitarily invariant. It is

easily seen, however, that while T,a,W and p in (li.) (which involve only

the eigenvalues of C) are invariant under (unitary) similarities of C, the

quantities w,p and v may well not be invariant. Hence, our lower bounds

for p in sections (iii) and (iv) of Theorem 1.3 are possibly not unitarily

invariant, so in general these bounds are prcbably not optimal.

Although the bounds in (1.5) and (1.6) are unitarily nvariant, we conjec-

ture that usually they are far from optimal. The only instance in which we

have knowingly achieved the best multiplicativity factor was the case of the

classloal numerical radius r, where we showed [5, Theored 2.41 that pr= - ;

If C Is 92 with eigenvalues of the sam argument, then evidently
- . Bence, the bound in (1.5) coincides with the one in (1.6), so there

is no point in giving a W example for Theorem 1.3 (i).
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i.e., tr is a matrix norm on ~n n>2, if and only if i>I. As

indicated in Theorem 2.4 of [5], this result holds for arbitrary (finite or

infinite dimensional) Hibert spaces, where the numerical radius of a bounded

linear operator A is

r(A) = sup I(Axx): (xx)

2. o of Thorem 13

The main part of the proof consists of obtaining appropriate lower bounds

for rc(A) in terms of the entries of C. We begin with,

LEMA6 2.1. [5, Lemma 4.1]. Let C -(,jk) e gn. be an upper triangular

matrix, and let CA, 1 < A < n, be the matrix obtained from C by setting

the off-diagnal entries in the last n- columns of C equal to zero.

Then for all A e Cnxn ,

(2.1) r (A) r (A) , A-i,...,n-l

With this lemma we can easily prove:

LDhEA 2.2. Let C = (Yjk) e Czn be upper triangular with a diagonal

part D -'diag(yl,.'.,,ynn). Then

rc(A) rD(A) VA e ..

Proof. Using the notation in Lema 2.1 we have

C.C , D C1

Thla by (2.1),
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C(A) r (A) r (A) > r A) = rD(A)

and the proof is ccmplete. 0

IM44A 2.-3. If D= diag(vl,.. '-my is a diagonal matrix, then

rD(A)> Itr A (n - ) r(A) V A eCn

where r(A) is the classical numerical radius in (1.2), and 8 and T are

defined in (1.4).

Proof: We write

D D- D2

where

81 -i trD- J , .jm1,...,n

Since a matrix U e CM is unitary if and only if its columns

_,...,u am ort norma (o.n.), we have,

(2.2) rD -IIxa4Itr(1LT'AU)I:U -unitary, n x n

M Max( itr(DU*AU) - tr( 2U*AU) I : U unitary)

- Inax{I:trD tr A tr(D2U*AU)I:U unitary}

-- I .- ,xfjl~l : u*u -ml1
- Itr Al- I I0 6I (A) •

J-1

l
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Now, writing for convenience j = j,

(2.3) 18,1 ='Y 3 -(y +

1 ('j--1 + + ('Yj Y-1) + (v.j -'v3.~ + +* +- ,r
1j

j'j- "l- "' + I -', . 1+ I', -',j+ll + + I+j-7nll
n-

-5 n

So by (2.2) and (2.3) the Lemma follows.

REMARK. In the proof of Lemma 2.3 we have shown that

n

It seems that this inequality can be improved to read
n

3=1

This would follow from the following:

CONJECTURE. Given a set S of n points in Euclidean space so that

the diameter of a is 5, then the sum of the distances of the points from

the centrold of i is maimal when the points are distributed in as nearly

equal numbers as possible over the vertices of a regular simplex with edge-

length B.

In the Eiclidean plane this means the vertices of an equilateral'triangle, .

so that for n which is a multiple of 3 we get exactly n distances 8/%3

from the centrold of the triangle.

Having Lema 2.2.and 2,3, we immediately obtain:
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COROLARY 2.1. Let C e xnC be upper triangular, and for A e Cnxn

let e satisfy

jtr Al = en r(A)
Then

r (A) > (Te -(n-.1)5r(A)

We turn now to study the contribution of the off-diagonal entries of

C to rC(A).

LEMA 2.4. Let C = ( Eyk) e nxn be upper triangular, and let y> 0

be the largest absolute value of the off-diagonal entries of C as defined

in (1.4). Then

rC(A) >k -R(A) A e Cn,

where

RCA) ama4Ix*AyI :x,y o.n. in

Proof. Let 'y , p < q, be an off-diagonal element of C satisfying

(2.)4) I 1 = ,

and let C be the matrix obtained fran C by setting all off-diagonalq
entries in the last n-q columns of C equal to zero.

Since for any B = (nXn we have

r B(A) = max[ I tr,(BV*AU) I :U unitary]

M max {j ul ...,U, o.n.}

then

(2.5) r (A) MUX I + oAl}
Y uAu + 'Yk AUJI-
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Now let v ., be an o.n. system such that

jvvI R(A)
and denoteq

~arg(,y V*Av)

ar( ' vAvj

JJ#P

{yi (a q apq)

Then Wl,...,wn are o.n. with

lwq*Aw.I R(A)

and

arg(pqwq*'w ) = arg (F, Yjq wAw a =~q

Next, denote

n

So wv SIP ..'pn are* 0.1. with

(2.6) Is.*AzpI R(A)



q-1

(2.7) arg(,y z*Az) =arg l y z*Az

varg z*Az + jkk zAz.,

By (2.5) - (2.7) and Lemna 2.1, therefore,

n
y-R(A) -Tl[ypq zAz,- 1 :5 1 , j j zjAzj + Z TJk zkAzj

< rC(A)- rCq+(A) < ... < r Cn(A) = r(A) 0

We now quote an interesting result of Stolov.

LEMMA 2.5. [10, Theorem 2). For any A e

R(A) Z rad IKA),

where rad W(A) is the circumradius of the numerical range of A, i.e.; the

radius of the smallest disc containing the set

IA) = fx*Ax:x e n , * 13

Next we prove,

Lm2.6. For any A s

r d w(A) r(A) - Itr AI

Proof. Bince the Toeplitz-Hausdorff Theorem (e.g.[2,7)) states that the

numerical range is a convex set and since the eigenvalues of A are contained

in W(A) (agIn [2, 7]), then the centroid of these eigenvalues, (1/n)tr A,

is a point in W(A). Consequently,
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r(A) = maxf1<1 . gA)1 < Itr AI + 2 rad w(A)

and the lemma follows. 0

Our three last lemmas lead to:

COROLLARY 2.2. Let A e C be given and let e be determined by*-nxn

Itr A= nr(A)
Then

r (A ) (1 -le) rC(A)

Proof. By Lemma 2.4 - 2.6, we have

rC(A) > - R(A)> y rad TJA)

> 2r(A) -- tr A 1 ( l-e9) r(A). 13

We are now able to obtain the following lower bound for rC(A).

LEM 2.7. Let C = ((jk) c C be upper triangular with tr C iO.

Then:

(i) For an A C

(2.8) rc(A) Z II&II ,

where
= - (n -1&

,8~ and vyare as in (1.4); and

IA112 = ((x*A*A)1/2 x 6 , x x =

is the spectral (i.e. -) no= of A.

ti
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(ii) If in addition, the eigenvalues of C are equal, then for all

A e nn

rc(A) Z- PI!A!12

where p is defined in (1.4).

Proof. Take any A'c 2. and let e satisfy trA = en r(A).

Then by Corollaries 2.1 and 2.2,

(2.9) rc(A) maxfe- (n-1)b, 7 (l-e)) r(A)

Since Y > 0 and = Itr C1 > 0, then the expressions in the braces are

functions of e describing straight lines with opposite slopes which

intersect for 0 = e0  where

o y + 2(n- )5
=0 2T+

Thus, for any E,

(2.10) max( -(n-1)5, (1-0) > (l-e 0 ) = 2 ;

and (2.9),. (2.10) yield

rC(A) >.2 rCA)

This together with the well known relation (e.g. (6, 71)

r(A) D. A1l 2

gives (2.8).

Part (ii) of the lemma follows from the fact that if the eigenvalues

of C are equal, then 8 = 0 and g.= p. 0

The lower bound for rc(A) in (2.8) vanishes as the'off-diagonal entries

of C vanish and we are interested now in bounds which depend only on the

eigenvalues. This was done in (51 as described by our next lemma which

holds for matrices C that need not be triangular.

J _ _ _ ___
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W(A 2.8. Let C E CAx a  have eigenvalues yl,.... yn and let

tr C j 0. Then:

(i) For all A ECnn

(2.11) rC(A) -Z A1 412,

where in accordance with (1.4),
Tbn

U8ly2 'ykl, T Itr CI
J,k J=1

(ii) If C is normal with eigenvalues of the same argument, then for

all Ae Cnxn ,

(2.12) rc(A) a 1A112

with ( as defined in (1.4).

Proof. By Lemma 4.2 of (5], if K = K ('y3,'"Y) satisfies the inequality

(3.1) of (5], then

(2.13) r (A) 2 1 IIA112  y A e A .

Reviewing the proof of Theorem 3.1 (ii) of [5] we find without difficulty
that since r Itr Cl > 0 (8 may vanish), then r. - r8/(2T- 2r/n + 8)

satisfies inequality (3.1) of [5); so (2.13) implies (2.11). (
For part (ii) of the lemma, we menticn that by Theorem 3.1 (ii) of [5], A

if the Y, are of the same argwent, then inequality (3.1) of [5] holds

with r = 5/2. Hence (2.3) yields

rC(A )  H IAU2

which, if ccmbined with (2.11), gives (2.12).

i - - - -
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Our next results provides upper bounds for rC(A) •

LEMM 2.9. [5, Lemma U4.31. Let C= (jk) e AX have eigenvalues

• !et
nn , " n k Ii N-iT

minv. IfYjkI}j , 1 'Yfi k--1 k-1= l=1 41

(which agrees with (1.4) if C is triangular.) Then:

(i) rC(A) < 'WIIA2 V A e C

(ii) For normal C

rc(A) < cIjAI 2  V A e gn

(iii) For normal C with eigenvalues of the same argument,

r(A) < TIIAI12 -iA1 2  V A en n

Proof. The proof of (i) is given in [5]- Parts (ii) and (iii), whose

proof was omitted by mistake, follow Inmediately frca part (i) and from the

fact that since rC is invariant under unitary similarities of C, then

for normal C we may take C = diag(y1 ,...,yn). 0

We still need the following version of a result of Gastinel.

LDK& 2.10 ([1], [4, Theorem 5).) Let 3 and N be a matrix norm

and a generalized ,matrix norm on C ,respectively; and ~let ij > 0
.o

be constants satisfying

CM(A) <N(A) <j M(A) V A e m~
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Then any v with p > 2 is a multiplicativity factor for N.

With Lemmas 2.7 - 2.10 we are finally read for:

Proof of Theorem 1.3. (i) If C is normal with eigenvabies of equal

argument and tr C j 0, then by Lemmas 2.8 (ii) and 2.9 (i1),

*11 2 5 rc(A) -TIIAI ajlA12  V A E C, .

Since C is diagonal but not scalar, we have 8 > 0. Thus p > 0, so Lemma

2.10 holds with

M=fl.112, N r -j=T=0, r •

and (1.5) follows.

(ii) If C is normal with tr C 0 0, then Lemmas 2.8 (1) and 2.9 (ii)

give

'lIA112 5 rC(A) _ o11All2 V A e 6 •

Since the eigenvalues are not all equal and tr C j 0 then r> 0 and 5 > 0;

so W > 0, and Lemsa 2.10 again implies (1.6).

(iii) By Lemmas 2.7 (ii) and 2.9 (i),

PA16 5- rc(A) 5 w HA2  V A e Cn6 n

Apan t - Itr CI 0, and since C is nonnormalthen y>0 too. Thus,

p > 0, and Lemma 2.10 implies (1.7).

(iv) Last, if C is nonnormal with eigenvalues not all equal, then by

Las 2.7 (1), 2.8 (1) and 2.9 (1) we have

vIIA112  m ,]' 1A112 -5 rc(A) - w DAU2  V A _ 6

As in part (i), > 0; so v > 0, and Tm 2.10 completes the proof.

iii' 0

1 .... , I ' I. ... ...
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